Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

3D Image Metrology for Lean Manufacturing

1999-06-05
1999-01-2290
The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Technical Paper

3D Inside Vehicle Acoustical Holography

2002-07-09
2002-01-2228
A continuously growing demand comes from the automotive industry in order to get an experimental tool allowing for the optimization of materials and sound insulating products implementation inside the car, so as to propose the best acoustic performance at reduced costs. The acoustical imaging system LORHA provides part of the solution and its demonstrated capability of measuring the acoustic field inside a vehicle makes it an advanced tool for performing extensive studies of the acoustic transparency of car openings. This paper focuses on the methodology and recent operational results obtained within the tight collaboration established between METRAVIB RDS, its partner HUTCHINSON and well known car manufacturers.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

3D Modelling of Combustion and Pollutants in a 4-Valve SI Engine; Effect of Fuel and Residuals Distribution and Spark Location

1996-10-01
961964
The SI engine combustion model LI-CFM introduced by Boudier et, al. (1992) [8] is extended to deal with actual engines. New models are proposed to simulate ignition with convection at the spark and flame-wall interaction. The scalar properties of the unburnt gases within the combustion zone are computed. This allows for the computation of flame propagation in temperature, fuel and residual gas stratified charges. A model for NO and CO formation is introduced. It is based on a conditional burnt/unburnt averaging of the reaction rates. Pollutants are created at the flamelet level and evolve in the burnt, gases using a mixed equilibrium/kinetic scheme. All these physical models are implemented in a multi-block version of the Kiva 2 code, KMB. This code is used to simulate a 4-valve engine including intake ports. Initial and boundary conditions are obtained from a ID acoustic code.
Technical Paper

3D Numerical Study of Sloshing Attenuation Using Vertical Slotted Barriers

2019-07-25
2019-01-5080
The present study deals with the reduction of fluid vibrations by dissipating the kinetic energy in a closed vibrating container partly filled using vertical slotted obstacles. The effect of the barriers on the liquid vibration inside a closed container exposed to a harmonic excitation is numerically studied. A single vertical slotted barrier (SVSB) and multivertical slotted barrier (MVSB) systems are considered for different liquid levels. The 3D liquid domain with the tank and the barrier as boundaries is modelled and solved numerically using ANSYS-CFX software. The reduction in pressures on the walls and the ceiling of the tank due to the influences of the slot size and numbers were evaluated to optimize the size and the numbers of the slots. The numerical approach shows an ability to simulate the nonlinear behavior of the liquid vibration when using vertical slotted barriers (VSB).
Technical Paper

3D Simulation of Induction Port Flow of a Four-Valve Engine Configuration

1992-02-01
920586
Steady induction port flow has been simulated in a complex configuration, which is modelled on a four-valve engine with a pent-roof chamber. The numerical solution has been obtained using a finite volume method coupled with the standard k - ε turbulence model. It is shown that the 3D flow field is characterised by large vortices with horizontal axes induced by the inlet jets, and by flow interaction between inlet jets from both valves. Special attention has been paid to flow distributions in the valve curtain areas. Velocity and turbulence energy profiles have been obtained in these areas and compared with previous hot-wire measurements and 2D calculations using Reynolds stress models as well as the k - ε model. The findings in this study are expected to enhance our understanding of complex engine induction port flows and to provide better boundary conditions for in-cylinder flow calculations
Technical Paper

3D analysis of vapor and liquid phase of GDI injectors using laser induced exciplex fluorescence tomography in a high pressure/high temperature spray chamber

2007-07-23
2007-01-1827
The quality of mixture formation in gasoline direct injection (GDI) engines has a significant influence on combustion, emissions and mileage. A new measurement technique was set up at an optically accessible high pressure / high temperature spray chamber to investigate the spatial mass distribution of vapor and liquid phase in order to optimize the stratified engine operation mode. Therefore a laser light sheet is traversed through the spray, the exciplex fluorescence is detected and the tomography results are quantified by the global information of the injected mass, which allows detailed spray investigations with λ-charts. For spray homogeneity analysis a new method based on histogram calculation is presented allowing grid independent comparison of different injector types.
Technical Paper

3D-CFD Flow Structures in Journal Bearings

2009-11-02
2009-01-2688
Hydrodynamic radial journal bearings under unsteady load, which are common for automotive applications, are exposed to cavitation, e.g. flow, suction, shock and exit cavitation. The fluid mechanic description of the flow in journal bearings takes advantage of the small bearing clearance, which allows the reduction of the Navier-Stokes equations and leads to the Reynolds equation. The Reynolds equation is two-dimensional, the radial pressure gradient and the radial velocity component are neglected. However, the equation includes the surface velocities, oil density and viscosity and describes the relation between hydrodynamic pressure and local clearance. With the introduction of a cavitation index or a mass flow coefficient a powerful method to carry out numerical studies can be created, which allows the calculation of flow properties and the prediction of regions where the lubrication film disintegrates.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

4-Sensor 2-Channel Anti-Lock System for FWD Cars

1986-02-01
860511
The possibility of 2 Channel anti-lock system, which controls each of two independent hydraulic circuits of diagonal split braking system of FWD car seperately, were studied. Theoretical investigation suggested two out of four possible control logics to be promising and they were proved to be practically satisfactory through vehicle test. This system is almost as effective as expensive 3-channel or 4-channel system, when the braking force distribution between front and rear axles is correct as required by EEC Braking regulation. Under extreme condition that rear wheels lock earlier than fronts, the compromise between stopping distance and stability is necessary.
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

42V Design Process

2000-08-21
2000-01-3052
Demands for new features, increasing electrical loads, and improved fuel-economy are driving development of 42V PowerNets in automobiles. Shorter design cycles, increased complexity and a focus on quality are making robust design processes a strategic advantage for competitive manufacturers. Hardware prototypes are both time-consuming and inadequate for the task of verifying performance over a broad range of operating modes, environmental conditions and part-to-part variations. This paper outlines the use of an advanced design-flow, from idea to manufacturing, for vehicle power systems. It starts with the analysis of different topologies down to the subsystem modeling of a power window system. Finally it integrates everything to a Digital Mock-Up (DMU) and analysis of the entire system. Dynamic interactions among the various supplies, converters and loads are examined. System stability and performance are assessed under normal and extreme operating conditions.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

42V-PWM - Lighting the Way in the New Millennium

2000-08-21
2000-01-3053
As the vehicle electrical system migrates to the recommended 42-volt system in the future, 42V incandescent lamps will not be practical due to their short filament life. Alternatives to incandescent lamps are discussed. However, due to the inherent simplicity and cost advantage over alternatives, incandescent lamps remain the light source of choice for the auto manufacturer. A scheme to power the current 12V incandescent lamp directly from the 42V line will be presented as a viable low cost solution for the 42V system. This scheme utilized pulse width modulation (PWM) which eliminates the use of expensive DC to DC converters. Implementation schemes, preliminary results, advantages and issues are presented.
Technical Paper

4300 F Thermocouples for Re-Entry Vehicle Applications Part II

1963-01-01
630360
This paper presents a discussion of the component evaluation and design development work performed in developing a 4300 F reentry vehicle nose cap temperature sensor. Material compatabilities, insulation resistance, and atmospheric pressure effects on bare wire calibration data are discussed in some detail. The final design is outlined and the application problems discussed. The probe utilizes: a sintered iridium high temperature sheath (4300 F) and platinum 20% rhodium as the low temperature sheath (3000 F); beryllia as insulation -- hard fired at 4300 F and compacted powder at 3000 F; tungsten versus tungsten 26% rhenium as the thermocouple pair.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
Technical Paper

48 Development of Exhaust Valve Seat Insert Material for High Performance Engines

2002-10-29
2002-32-1817
Engines are assigned big subjects such as low emission and low fuel consumption as well as higher output (higher efficiency) in the latest trend of environmental protection. In order to meet these requirements, Air/Fuel ratio of recent high performance engines is being arranged leaner than that of conventional engines. As a result exhaust valve seat inserts used in these engines have problems of their wear resistance because of high exhaust gas temperature. By analyzing wear mechanism under the lean burn conditions, authors developed material for exhaust valve seat inserts which show superior wear resistance under high operating temperature. For the purpose to enhance heat resistance, authors added alloy steel powder for matrix powder and used hard particles which have good diffusion with matrix. The developed material does not include Ni and Co powders for cost saving and has superior machinability.
Technical Paper

50 Development of Measurement Method for Airborne Sound Emitted by Personal Watercraft

2002-10-29
2002-32-1819
The personal watercrafts (PWC's) are operated in various ways; going around on certain course again and again, repeating acceleration and deceleration, or prolonged idling operation, for instance. The procedure of ISO 14509 has been applied in the traditional sound measurement for powered recreational craft. However, the standard is designed to measure the sound from the typical small crafts, on the assumption that they run straight in a constant speed. It is believed to be inappropriate to use this procedure for the measurement of PWC sound. In trying to establish the suitable procedure for PWC, evaluation by the auditory sense of 15 raters was carried out in parallel with the traditional sound pressure level measurement. As the candidate, four (4) measurement methods were employed in this test. 5 models of PWC's including modified crafts were used. Correlation between the results of traditional sound measurement and the auditory sense ratings was examined.
X